
SCALING
FEATURE FLAGS

A Roadmap for Safer Releases
& Faster Development

In Collaboration With

2

Contents
4	 Moving fast, without
 breaking things

6	 Why feature flags?

7	 Building a strong foundation

9	 Tailoring feature flags to your
 organisation’s needs

10	 5 feature flag best practices

11	 Using feature flags for safer releases
 & faster development

15	 Easy reference guide for feature flag
 types & uses

17	 How eBay migrated to OpenFeature
 at scale

20	 Wrapping up

3

“How are other large
organisations using
feature flags?”

These are questions we get a lot.

Questions that often kick-start really interesting
conversations with software architects, engineering
leaders, and developers working in regulated
industries. The problem? They’re all happening
behind closed doors.

This guide throws open those doors, exploring these
questions and serving as a roadmap for introducing
feature flags into large, regulated, or complex
organisations—and then scaling them.

“How do we introduce
feature flags across
our entire engineering
organisation?”

“How can we reduce risk
in our releases without
slowing down our
development cycles?”

“Our biggest challenge right
now is modernisation—
what tooling can help and
where do we start?”

4

MOVING FAST, WITHOUT
BREAKING THINGS

No matter what industry you’re in, the pace of change
keeps ratcheting up. Organisations see increased
competition from both established incumbents and
nimble upstarts, while at the same time the external
landscape these businesses operate in seems
increasingly turbulent—regulations change, supply
chains are shocked, revolutionary technology appears
seemingly overnight…

Pete Hodgson
Fractional CTO & OpenFeature
Governance Board Member

Foreword

deployment incidents, higher risk for security vulner-
abilities. “Move fast and break things”, as the saying
goes.

Happily, that’s not necessarily the case. Over the last
couple of decades, leading software organisations
have demonstrated that accelerating the rate of
change can actually reduce risk. It turns out that,
when you use the right practices, you can “move fast,
with safety”.

This claim—that a higher pace of software throughput
can lead to greater stability—may provoke some
healthy scepticism from yourself or your peers. It
certainly sounds a little counterintuitive. However,
this idea is backed up by solid empirical research, as
detailed by Dr. Nicole Forsgren and her DORA team
in their book Accelerate. This research group applied
statistical modelling techniques to data from over
23,000 survey responses, collected over the course
of multiple years, to try and understand the practices
that organisations around the world use to build
software, and how well those practices work.

One of the most interesting findings from this wide-
ranging group was the correlation between a higher
pace of software throughput and higher levels of
stability and quality. It’s also worth noting that their
findings didn’t seem to be strongly affected by the
size or type of organisation—big or small, regulated
or not, the same correlations were evident.

The most exciting part is that the DORA team didn’t
stop at just looking at these performance metrics;
they also looked at the practices these different

Modern software delivery with feature flags

“It turns out that, when you use the
right practices, you can move fast,
with safety. ”

To respond to all this change, enterprises need to
become more nimble—they need to be able to make
quick decisions, experiment, and adapt. And given
the increasingly digital nature of every enterprise,
this naturally leads to higher and higher expectations
around the pace of software delivery.

But while expectations around the pace of software
delivery are increasing, expectations around
quality, security, and compliance remain the same,
particularly for larger enterprises operating in higher
regulatory environments.

On the face of it, this appears to be an unresolvable
conflict. Surely accelerating the pace of change means
accepting a trade-off in terms of risk—higher risk
for bugs and errors slipping past QA, higher risk for

https://blog.thepete.net/about/
https://openfeature.dev/

5

organisations were using. They identified a specific
group of “high performer” organisations who were
differentiated on a key set of software delivery
metrics, and most importantly they were able to lay
out a set of software delivery practices that these
high-performing organisations used to achieve speed
with safety.

The obvious question is, what are these organisations
doing that allows them to accelerate their pace of
software delivery while still maintaining quality and
stability? In large part, we can say that their success
lies in a set of practices that accelerate the feedback
loop between code being written and code being
deployed— a set of practices often referred to as
Continuous Delivery.

This cluster of techniques works together
to achieve an interconnected set of
principles:

•	 Reduce manual work in testing and deployment
activities

•	 Work in small batches

•	 Keep codebase in a deployable state

•	 Architect systems for decoupled deployments

•	 Make frequent deployments to production

What the DORA research showed us is that organ-
isations that focus on these Continuous Delivery
practices are able to move faster than their competi-
tors, while still maintaining safety and quality.

One practice that is near-ubiquitous within these
high-performing organisations is feature flagging,
something you’ll no doubt be happy to hear since
you’re holding this eBook in your virtual hands.

Feature flagging facilitates a central tenet of
Continuous Delivery: separating deployment from
release. If a team wants to work in small batches and
make frequent deployments to production, they are
confronted with a challenge: what to do with work
that doesn’t fit into one of those small batches. Let’s
say the team doesn’t want to accumulate more than
a week’s worth of code changes without a production
deployment. What do they do if they have a feature
which is going to take two weeks to implement? The

answer is that they incrementally merge and deploy
their changes all the way to production, despite it still
being a work-in-progress. That’s ok though, because
the changes are deployed as latent code, inactivated
behind a feature flag. Then, once the feature is fully
implemented (and tested) the feature flag is flipped on
and the feature is released. This is what we mean when
we say deployment is separated from release—the
implementation of the feature is deployed incremen-
tally, but the feature is only released when ready.

We shouldn’t stop here. While Continuous Delivery can
transform a team’s way of working, feature flagging can
do a lot more. It’s also a central part of practices like
A/B testing and experimentation, helping to level up
the entire product delivery process. On the operational
side of things, feature flagging unlocks advanced
techniques like canary releasing and dark launching;
another way for organisations to move faster, with
safety.

I first started talking to engineering leaders about
feature flagging in 2016, and have served on the
OpenFeature governance board for the last three
years. Over the past 10 years, I’ve had the opportunity
to see first-hand how, as companies navigate an
increasingly challenging and dynamic landscape,
feature flags keep on showing up to enable a practical
balance of speed and safety. It’s been gratifying to
watch the adoption of these practices grow from a
quirky idea evangelised by some upstarts in Silicon
Valley to a very mainstream technique suitable for
even the most mature engineering organisations.

I’ve also seen that these benefits don’t come for
free—feature flags do have a carrying cost, and can
contribute their own technical burden if not managed
intentionally. This is especially true at scale and for
large organisations. If, however, your feature flag
adoption is done strategically, with practitioners
learning the correct technical approaches along the
way, then the agility and speed that can be gained is
undeniable. The following pages provide a roadmap for
how to safely and effectively do this at scale.

6

WHY FEATURE FLAGS?

Feature flags aren’t a new phenomenon. Notable
early converts include companies like Flickr, Etsy, and
Facebook, with Martin Fowler and Pete Hodgson writ-
ing this foundational 2017 article that still influences
thinking today.

As their popularity has grown, companies operating in
complex environments have started to see the bene-
fits. At a high level, they can:

•	 Remove development bottlenecks

•	 Minimise risk around releases

•	 Speed up time-to-market for new features

•	 Improve end-user experience (by significantly
shortening feedback loops)

Of course, this doesn’t happen from simply introduc-
ing a few “if” statements into your codebase. Feature
flags are more of a social innovation than a techni-
cal one. Their real magic is revealed when flags are
introduced to an organisation at scale—impacting the
very way software gets built. The technology is only
half the battle. Determining how to use it, who can
use it, and how to drive adoption successfully is just
as important.

Because feature flags live deep in your codebase, it’s
important to introduce them in the right way, avoid-
ing locking you into specific vendors—or bad habits.

As large organisations modernise their development
practices, introducing metrics like DORA or SPACE,
Continuous Delivery has taken centre stage. Feature
flags play a natural supporting role here, serving as
prerequisites for adopting CD practices that unlock

faster release cycles, better code quality, greater
developer productivity, and increased team collabo-
ration.

Feature flags are more of
a social innovation than a
technical one. Their real magic
is revealed when flags are
introduced to an organisation
at scale—impacting the very
way software gets built.

Banks, insurance, healthcare, and government agen-
cies face a unique set of challenges when it comes to
modernising their development practices, operating
in highly-regulated environments with release practic-
es that can feel like they’re set in stone.

The following pages provide strategies and examples
used by some of the largest enterprises in North
America and Europe. The goal is to share practices
that can help introduce feature flags at scale, allowing
companies to introduce modern development practic-
es that give developers greater flexibility and speed,
while increasing the safety of releases.

https://code.flickr.net/2009/12/02/flipping-out/
https://martinfowler.com/articles/feature-toggles.html

7

BUILDING A STRONG
FOUNDATION FOR
FEATURE FLAGS

How to fight vendor lock-in:
Insights from OpenFeature

Feature flags have become essential to modern soft-
ware delivery, but implementation across your enter-
prise presents a critical choice: how should feature
flags be managed? Many options exist, ranging from
homegrown solutions to third party vendors. Until now,
each choice required developers to use solution-specif-
ic feature flagging patterns, locking organisations into
their choice and presenting a high switching cost to
explore other options.

Following in the footsteps of OpenTelemetry, Open-
Feature, a CNCF incubating project with broad in-
dustry support, solves this problem by providing a
vendor-neutral, open standard for feature flags. Your
development teams write code against one consistent
API, while your organisation maintains the freedom to
use any provider. Many organisations report that intro-
ducing OpenFeature’s abstraction layer is a key step in
migrating from disparate internal solutions to a con-
solidated feature flagging provider, or even abstracting
multiple different providers behind a shared interface.

Why vendor-neutral standards matter

Many enterprises face a common challenge that com-
pounds as they scale: feature flags exist in multiple
forms across the organisation, from dedicated vendors
to multiple homegrown feature flagging and configura-
tion management solutions. This fragmentation creates
inconsistent developer experiences and complicates
governance, especially in regulated industries where
oversight is paramount.

Michael Beemer
OpenFeature Governance Board Member

By providing an abstraction layer between your appli-
cation code and feature flag providers, OpenFeature
addresses those challenges by offering:

•	 A consistent developer experience regardless of the
underlying implementation

•	 Common terminology through a standardised glos-
sary that aligns communication regardless of the tool
or vendor

•	 Flexibility for different teams to use their preferred
providers while maintaining standardisation

•	 Seamless migration between providers as your needs
evolve without disrupting operations

•	 Streamlined governance through consistent policies
and monitoring across all feature flags

•	 Reduced training costs as developers learn one pat-
tern that works across projects and teams

OpenFeature in practice

Consider a large financial institution with multiple busi-
ness units, each with its own feature flag solutions. By
implementing OpenFeature, they can:

1.	 Standardise how developers interact with feature
flags in code

2.	 Gradually consolidate to enterprise-wide feature flag
platforms where beneficial

3.	 Maintain flexibility where different teams have
unique requirements

4.	 Enable consistent governance and reporting across
all implementations

For organisations undertaking modernisation initiatives
mentioned throughout this guide, OpenFeature provides
a critical path for successfully scaling feature flags across
your organisation while avoiding the pitfalls of vendor
lock-in.

https://openfeature.dev/community/interested-parties/#interested-organizations
https://openfeature.dev/community/interested-parties/#interested-organizations
https://www.linkedin.com/in/beeme1mr/

8

People & processes

Doing a good job of introducing any new technolo-
gy into a large organisation starts with people—the
people behind the technology and the internal teams
who will adopt it.

Driving change in large organisations is an iterative
approach—it won’t happen overnight and it doesn’t
need to be overwhelming, especially if you take the
time to plan out your implementation. Keep these
steps in mind when approaching your planning:

1.	 Ensure that company leadership is on board—
transformations driven by executive sponsorship
tend to have a higher rate of success

2.	 Identify a champion or working group who can
own the implementation, help with internal on-
boarding, and work directly with your feature flag
provider to get up and running

3.	 Decide if a pilot programme is needed

4.	 Come up with a plan for a phased rollout (more
on this on page 17)

5.	 Map out how you are currently releasing new
features and who is part of the process

6.	 Identify any existing feature flagging solutions
currently in use—they might be disguised as con-
figuration management

Map your current release strategy

Introducing feature flags at scale often happens as
part of a wider modernisation project, which means
you may have already done things like identifying the
different players and processes in your development
cycle. If not, teams often find this to be a valuable
exercise when preparing to introduce feature flags.
Think about:

People

•	 Which teams are involved?

•	 How do product and engineering teams currently
work together?

•	 How do the engineers and product managers
work together on specific branches?

•	 Who has the ability to deploy vs. release?

•	 Who else in your organisation outside of engi-
neering and product is involved in releases?

Processes

•	 How do your engineers currently do branch man-
agement?

•	 How does a new feature move from idea > itera-
tion > deployed > released?

•	 Which parts of this process add value?

•	 What are the bottlenecks? Do certain steps re-
quire approvals?

Introduce change thoughtfully

By introducing feature flags into your software de-
velopment lifecycle, you’re fundamentally changing
the way teams build software. Your engineering, QA,
product, and DevOps/infrastructure teams will experi-
ence a massive change in the way they work together
(often moving from long, sometimes painful branches
to shorter branches that allow for more flexibility).
Introducing this change in a thoughtful manner will
mean bringing together stakeholders from each of
these functions for rounds of feedback.

Bringing on feature flags will look slightly different for
every organisation, but there are some best practices
you can keep in mind (we’ll go over a few on page 10).
Many teams also start small, whether with shov-
el-ready use cases or a pilot programme, and then
build from there.

An important part of a successful company-wide
adoption will be securing time: the time of your cham-
pion or working group and the time of any teams
piloting this new way of working. Budget for this up
front and create a plan with specific milestones and
owners—as well as a strict timeline, so that the proj-
ect keeps moving forward. Ensure this plan is shared
at a company level, so that those involved are moti-
vated to stay on time and on track.

9

As you begin to determine how to introduce feature
flags into your release processes, ensure your team is
familiar with the different kinds of flags as well as best
practices to keep your flags healthy and reduce tech
debt.

Create governance for how you
will use feature flags

Flags can become an anti-pattern if implemented
incorrectly, so keep in mind their different types and
lifecycles as you begin to determine how your organ-
isation will use them. We like to think of feature flag
governance as a series of layers—every type of flag
will look different depending on your infrastructure
and development practices and the level of security
you need.

Set roles & permissions

Data security is top of mind for every company, but
organisations operating in regulated industries are
held to a higher standard.

Determining feature management access levels will
be part of the conversation as you begin to introduce
feature flags at scale. It’s important to find the right
balance between rigorous security standards and
productivity. You want to avoid creating unnecessary
bottlenecks.

One way to manage this is by creating roles and per-
missions for users and taking advantage of features
your provider has, like change requests and feature
approval workflows.

TAILORING FEATURE
FLAGS TO YOUR
ORGANISATION’S NEEDS

This means that individuals will be given different
levels of control and have their usage restricted based
on need. Just like any other software permissions in
your business, the best practice here is to only give
users the level of access necessary for them to do
their jobs.

You’ll also want to think about, and define, how differ-
ent types of flags will require different levels of securi-
ty within your organisation. High-stakes experiments,
for example, should always require two users, a
“4-eyes” sign off, with the appropriate permissions to
approve changes. As another example, “break glass”
feature flags can be used in special circumstances to
allow immediate, emergency-level access to a critical
function or behaviour, typically bypassing existing
permissions.

Enable audit trails

Once you’ve decided who can make changes and
where, it’s still important to track changes that do
get made. Recording any features that are creat-
ed, changed, or deleted, as well as who took those
actions and when, is especially important if you have
a large number of developers working in different
teams. Having this information can save a lot of time
and confusion in knowing what has been done, when,
and by whom. For companies operating in regulated
industries, audit logs are also an important part of
compliance.

10

5 FEATURE FLAG
BEST PRACTICES

Feature flag deployment should be planned early
on in the software development process. If flags
are simply layered in as an afterthought, they
won’t be as effective. Whenever you start work
on a new feature, think about how you can put it
behind a feature flag. The possibilities of feature
flags are endless, which makes it even more im-
portant to define a flag’s scope.

Start by defining exactly what each flag will do
when:

•	 Disabled/enabled

•	 There’s a remote configuration value

Additionally, think about the rollout plan. Will you
roll the feature out all at once, to segments, or to
individuals?

1. Clean up your feature flags! 3. Make flags as small as possible

4. Flags shouldn’t replace
 business logic

5. Create a naming convention

2. Design features around flags

The best way to get the most out of feature flags
(and enjoy using them while you’re at it) is to
clean them up after they’ve served their purpose.
Create a built-in process for flag archiving, making
this a regular part of your engineers’ workflows,
just as important as reviewing pull requests or
clearing issues in your issue tracker. This will help
manage tech debt and save your team time and
messiness down the road. Part and parcel of this
is understanding the difference between long-
lived and short-lived flags and when to use them
(more on flag lifecycles soon).

Multitasking is great, but not when it comes to
feature flags. Keep your feature flag scope specif-
ic. Start small—on/off flags are the simplest way
to get started. When you’re comfortable with this,
you can introduce more advanced capabilities.

Feature flag values shouldn’t be used as a re-
placement for business logic. If you create a
situation where flags are interpreting code with
branches that interpret rules, it becomes very
easy to make a mistake. Feature flag software is
not an integrated development environment. If
you treat it like one, you’ll lose a lot of the bene-
fits of just writing code and being able to test it
properly. For instance, you shouldn’t use feature
flags for access control. If you feel that you’re
using your feature flags to guard your data and
segregate between different types of users, you
should probably use business logic instead.

Having a well-defined naming convention is im-
portant for two reasons: One, better team col-
laboration: users will understand what happens
when a flag is turned on/off from its name alone.
Two, it will remove the burden of decision every
time you introduce a new flag and have to name
it. As Phil Karlton said, “There are only two hard
things in Computer Science: cache invalidation
and naming things.”

11

USING FEATURE FLAGS FOR
SAFER RELEASES & FASTER
DEVELOPMENT

It may seem counterintuitive to introduce greater
flexibility and speed into your release practices
when stability and predictability are paramount.
Yet, predictability has a downside: if your company’s
deployment practices involve long development
cycles that are predictably slow and painful, predict-
ability isn’t doing you any favours, it’s likely blocking
innovation and increasing the risk of something
breaking along the way. And, as Pete Hodgson points
out in his foreword, with the right development
practices in place, it’s now possible to move fast, with
safety.

Feature flags can help you reduce risk, improve
development velocity, and shorten feedback loops,
strengthening your product offering.

To explore what this looks like in practice, in late 2024
we conducted a survey of our Enterprise customers
in order to understand the ways feature flags are
impacting their development processes. The results
revealed three main areas of impact: risk reduction,
development velocity, and experimentation.

84%
Risk reduction

Releases feel less risky

What does this actually mean?

Feature flags reduce risk in a really simple way. Wrap code in
a flag, roll it out to users in a controlled way (e.g. with canary
deployments) and see how it performs. If anything goes wrong,
catch it in real time and roll back without needing to redeploy.

12

In software development, every new feature is a leap
into the unknown and brings up questions like: will
this work as intended, is it going to be well-received
by the users, will it introduce new bugs? Feature flags
form a shield against these uncertainties by reducing
exposure to risk via:

Canary deployment

A canary deployment allows you to release code to a
small subset of users before gradually scaling up after
checking its viability.

Kill switch

If something is broken in your code and it’s wrapped
in a feature flag, you can immediately disable it by
turning the flag off with the click of a button. This
has an added benefit of allowing you to continuously
progress in your code commits, rather than having to
remove the code at issue or redeploy. This way one
issue doesn’t stall the whole development path in its
tracks. Plus, you can roll it back instantly rather than
expose more and more users to buggy code.

Faster recovery

When things don’t go as planned, instead of rolling
back an entire deployment or trying to cherry pick
what to roll back, you can just toggle the offending
feature off. This keeps your services stable and your
users happy. And if you need to isolate an unstable
or underperforming feature during incidents (for
example, downtime, cyberattacks, etc.), you can do so
without bringing down the entire application.

50%
Development velocity

of customers that released every month before
Flagsmith, now release every day or every week
using Flagsmith

What does this actually mean?

By decoupling deploy from release, developers
can push their code when it’s ready. Code
quality goes up as developers push code
they’re confident in, and risk goes down. For
a chunk of teams, this leads to more frequent
releases. For the other chunk, regulations
mean monthly releases are still standard
(though many will still deploy more regularly,
especially to pre-production environments).

By separating deploy and release, feature flags enable
individual developers and teams to simply push code
when they’re ready instead of waiting around for the
next release window.

This prevents:

•	 A buildup of extra stress on the current release
window, likely causing rushed code and potential
bugs

•	 Putting extra stress on the next release by having
a buildup of extra unreleased code on top of what
you have planned

•	 Extra stress on developers as releases get bigger
and bigger

13

What is the number one way feature flagging has contributed to feature innovation?

Using feature flags to stay ahead
In large enterprises, release cycles tend to be long
and slow, whereas the market is always rapidly
evolving. Apart from freeing up engineering time for
writing code, working with feature flags allows you
to balance rapid innovation with system stability. By
decoupling deploy and release, your team can intro-
duce new features behind flags and enable testing in
production.

Experimentation

Feature flags give individual developers and teams
the freedom to test and iterate new features with
internal stakeholders, beta groups, and different
segments of customers. This freedom is enabled
without risk, because features are hidden behind
flags. This allows teams to use data from real users to
guide development strategy.

What is the biggest impact development
teams have felt?

14

Feature flags allow for numerous
other efficiency gains:

Reduce the number of development
environments

Feature flags naturally lead towards a mono-environ-
ment methodology and cut down on the reliance on
environments, letting developers release straight to
production—or in the case of highly-regulated com-
panies, pre-production. The money saved maintaining
the environments can allow you to invest in the
resilience of your production environment.

Combine features from previously
disparate teams

Say you’ve got web and mobile teams that are run-
ning in isolation—working on the same features, but
for different platforms. This lack of communication
can lead to bugs and also a lack of parity. Having a
single feature flag project can act as a talking point
between these isolated teams.

Improve collaboration between technical
teams and non-technical teams

In large organisations, a lot of engineering time is
spent coordinating with non-technical team members
like product managers (and vice-versa). This could
look like product teams relying on engineers to man-
ually adjust code to run a beta test or try targeting a
specific user segment for a feature rollout. By giving
non-technical team members the ability to manage
feature releases, this massive bottleneck disappears,
freeing up engineering time for building your product.

15

EASY REFERENCE
GUIDE FOR FEATURE
FLAG TYPES & USES

Short-lived feature flags enable you to integrate
new code into your main codebase while keeping
it inactive until release. For example, you can use a
feature toggle if you want to hide a new transaction
feature during testing. When you’re done testing,
switch it on and release it to all users before
removing from your code, or setting a reminder to.

User-based feature flags control feature visibility
based on user attributes or segments. Let’s say
you’re releasing a new tax filing feature in a govern-
ment portal. You can release it to only small business
users or sole proprietors before releasing it to your
entire user base.

Long-lived feature flags remain in the codebase
for extended periods—or permanently. They
encompass kill switches, and support for multitenant
architectures. You need to be careful and ensure they
aren’t removed since they’re critical to the stability or
usability of your application.

System-based feature flags control functionality
based on technical or environmental factors—not
user attributes. They work well in cases where you
use different deployment environments or system
conditions. For example, a finance app could use
these flags to deploy region-specific compliance
features based on the server’s geographic location.

Short-lived feature flags

User-based feature flags System-based feature flags

Long-lived feature flags

16

Release flags can control the deployment of new
features to production environments. They allow
teams to deploy and activate code separately,
ultimately reducing the risk associated with new

Experimentation flags allow you to run A/B
tests or any experiment in your application.
They’re meant to help you measure the impact of
specific changes you make. As a result, you can
make better decisions about which combination

Operational flags manage system behaviour
during runtime. So, they serve as an emergency
control or a way to optimise performance in real
time. If you run into production issues, these

Release Flags

Experimentation Flags

Operational Flags

releases. For instance, you can use them to gradually
roll out certain features automatically when they hit
certain thresholds.

of variables works better for your user base. Let’s
say you want to understand which button colours
increase clickthrough rates in your app. You can
run two or three versions of the button colour and
analyse which ones drive the most action.

flags let you respond without redeployment or code
changes. For instance, if your app experiences high
traffic, you can add thresholds to switch off certain
functions to reduce the traffic burden on the app.

17

How are large organisations bringing feature
flags on at scale and fighting vendor lock-in?

EBAY CASE STUDY With Chetan Kapoor
& Justin Abrahms

This case study is a condensed
version of a talk that Chetan and
Justin gave at the OpenFeature
North America Summit in 2024.
You can watch their full talk here.

Live Listings Active Buyers Worldwide

Stats as of Q2 2024

Markets Mobile Volume

Migrating to OpenFeature at scale:
0 to trillions of calls

~2.1B 132M 190 $12B

Where it started

eBay was navigating challenges familiar to many
large organisations—long development cycles,
riskier-than-necessary deployments, and a siloed
problem-solving culture. The statistics above offer a
little insight into the scale of these challenges.

Meet the Velocity program: Faster
delivery matters!

A 300-team cross-organisational effort staffed with
forward-looking principal and senior principal archi-
tects and key product leaders, the Velocity program
was built to succeed where other modernisation
efforts had failed. The program’s northstar mission
was to make software and product delivery a compet-
itive advantage for eBay.

In practice, this looked like a ground up reworking
of how eBay thought about feature delivery. How to
make it safer, easier, and faster, driven primarily by
the DORA and SPACE methodologies and focusing on
three main levers to find success:

1.	 Executive sponsorship (CTO and CPO sponsor-
ship): Securing executive sponsorship enabled a
mindset of, “go figure out the problem and then
fix it”

2.	 Very clear directive: Making software delivery a
competitive advantage (this was easy to apply
when deciding if something was in or out of
scope)

3.	 Budget and time to make this happen: Each engi-
neering team was allocated a percentage of their
total working time to use for the velocity initiative

Amongst other objectives, the
program aimed to solve three
key problems in eBay’s developer
ecosystem
1.	 Code was stuck in review—a slow review process

meant developers were stuck waiting to merge
code, so pull requests became larger and larger,
ending in slow feature development and riskier,
large-scale deployments

https://www.linkedin.com/in/chetan-kapoor-37662247/
https://www.linkedin.com/in/justinabrahms/
https://www.youtube.com/watch?v=6ivdFYgznxQ

18

2.	 Multiple configuration platforms targeting
different sections of eBay’s stack. Mobile had
their own feature flagging tool, there were a
few different feature flagging tools being used
by backend teams, and some teams were also
making use of an experimentation framework to
create feature flags

3.	 A culture of DIY rather than a platform mindset
that could save teams from reinventing the wheel

Weighing up solutions:
Build vs. buy

Looking at these challenges, the team saw the adop-
tion of a unified feature flag platform—and similarly
a unified way of using feature flags—as a possible
solution to these problems. They weighed building
their own vs. buying. In the end, the decision came
down to their experimentation needs. eBay has a
very mature experimentation engine that operates
at scale, and leadership wanted a straightforward
user experience that would seamlessly blend the two.
So they chose to build and add feature flags to their
in-house experimentation platform.

However, as the Chair of the Open Source program,
Justin knew that building something bespoke instead
of using an open-source solution felt risky in terms
of future-proofing. So they adopted OpenFeature to
provide an open-source facade layer. In the backend
they would then use the internal solution, knowing
that if this internal system didn’t work out, they could
always introduce a vendor later on without having to
rewrite the code.

Building a solution: Enter, eBay’s
experimentation platform
The in-house eBay experimentation platform is used
to A/B test most features before they are broadly
rolled out to customers, fostering a “test and learn”
culture that has served the company well.

Rolling out feature flags on a platform that already
had a very high internal adoption rate seemed like
the ideal strategy. “The idea of incorporating feature

flags into this flow just felt right”, says Chetan Kapoor,
the Head of Product and Chief Evangelist for Feature
Flags at eBay.

The following steps were taken to enable feature flags
on the platform:

1.	 Used OpenFeature SDK
• Authored eBay-specific provider and hooks
• Benefit: One API that eBay used for experimen
 tation and feature flags, so developers could
 get twice the value from one API, and were
 able to sunset 25+ legacy APIs

2.	 Added platform capabilities as they moved past
MVP
• Kill switch: allow site reliability to stop incidents
 with flags within 1 minute.
• Audience-aware targeting: A granular way
 of doing customer-based targeting. A simple
 example of this would be, “only show this
 feature to users in the UK, using Google
 Chrome, with sneakers in their carts”.
• Latency guarantee: developers requested
 best-in-class evaluation latency.

3.	 Simplified onboarding journey
• Removing blockers so that all engineers could
 and would use the platform for feature testing
 (improved internal documentation)
• Hiring a Technical Program Manager to work on
 simplifying onboarding and proselytising
 across the company

Building a MVP and driving
adoption at scale

Successfully building, iterating, and driving the adop-
tion of a new technology across a company as large as
eBay requires a high level of strategy as well as buy-in
from key stakeholders and influencers at every level
of the organisation.

Identifying initial influencers

To kick off the adoption programme, the team started
with three key developer stakeholders. They leaned
into education and topics like:

•	 What are feature flags

19

•	 Why should you care about them

•	 When should you use them—and when should
you not

•	 Which stakeholders can answer your questions

3.	 Get a commitment: share your plan and publicly
commit to it

4.	 Make sure the migration experience was self-
serve (the dedicated team had a dashboard to
monitor the migration progress, so they could
see which teams were lagging behind—this also
served as an easy way to troubleshoot and debug
if people came with questions about the migra-
tion being complete, etc.

5.	 Internal marketing campaign via newsletters and
escalation emails

How did it go?
Feature flags have fundamentally altered the software
delivery landscape at eBay. The company has been
able to shorten development cycles, reduce risk, and
increase developer productivity. The engineering and
product teams can now collaborate, test and iterate
on new features in an agile way that supports the
company’s culture of experimentation and continuous
improvements.

•	 Billions of calls made per day to the feature flag
evaluation engine

•	 2500+ experiments behind flags every year

•	 Rolled out to thousands of developers

•	 The 15-minute change propagation is now down
to 1 minute

•	 The 25 millisecond evaluation latency (deciding if
the feature should be shown or not) is down to <5
milliseconds

Identify internal
influencers and try to pilot
with a diverse and excited
group of developers.

Gradually, as the team collected and iterated on initial
feedback from these developers, they prepared to
scale it to other teams.

Scaling the pilot programme

They identified 21 different teams to run multiple
pilots with to learn and create the roadmap for a
feature flag MVP. They did three rounds of pilots over
three quarters, focusing on building product-market
fit internally:

Milestone 1: Make it possible for people to use flags

Milestone 2: Make it useful to use feature flags

Milestone 3: Make that process scaleable

Finding success & building the MVP

Once they had completed the final round of feedback,
they started preparing the MVP, which, once ready,
they had to roll out to everyone. No small feat at a
company the size of eBay. The team driving adoption
consisted of: Chetan Kapoor, Justin Abrahms, a
program manager, a senior architect, and a lead
engineer. Along with that dedicated team, they had a
5-step strategy:

1.	 All the different teams that needed to migrate
needed a real budget. They secured 10% of the
Velocity budget

2.	 Simple onboarding instructions and demos

20

WRAPPING UP

Feature flags allow large enterprises operating in
complex environments to move with an agility that
was previously unattainable. By releasing devel-
opment teams from deployments that are tightly
coupled to releases, engineers, QA, and product
teams, among others, can move at their own pace,
increasing development velocity as well as shortening
feedback loops.

For more reading, our guide Flip the Switch: Unlock
Modern Software Development with Feature Flags takes
readers through the ROI of feature flags for large
enterprises, how to remove development bottlenecks,
how feature flags fit into migration projects, and
more.

 - Senior Manager, Software Engineering, Fortune 500

Without feature toggling, we’d run a deployment,
do a check, and find something. Then we’d have

to decide to live with it or roll it back. Rolling back
meant a wasted night. With Flagsmith, we can turn

things on or off individually on a feature level, so it’s
just really made things smoother for us.”

“

https://143451822.fs1.hubspotusercontent-eu1.net/hubfs/143451822/eBooks/Flip%20the%20Switch%20On%20Modern%20Software%20Development%20with%20Feature%20Flags%20-%20Flagsmith.pdf
https://143451822.fs1.hubspotusercontent-eu1.net/hubfs/143451822/eBooks/Flip%20the%20Switch%20On%20Modern%20Software%20Development%20with%20Feature%20Flags%20-%20Flagsmith.pdf

21

Release with confidence
Flagsmith is an open source feature flag soft-
ware that gives developers peace of mind. We
work with data-sensitive enterprises across the
world, offering self-hosting and private cloud

deployments, features for maximum security,
and technical support to cover any needs. We
also partner with OpenFeature to support
open standards and prevent vendor lock-in.

Get in Touch

Flagsmith.com

https://www.flagsmith.com/contact-us
https://discord.com/invite/hFhxNtXzgm
https://github.com/Flagsmith
https://www.linkedin.com/company/flagsmith/
https://www.youtube.com/channel/UCki7GZrOdZZcsV9rAIRchCw
https://twitter.com/GetFlagsmith
https://www.flagsmith.com/?utm_source=book&utm_campaign=banking+ebook&utm_id=ebook

	Moving fast, without breaking things
	Why feature flags?
	Building a strong foundation for feature flags
	Tailoring feature flags to your organisation’s needs
	Feature Flags for Modern Releases
	Using feature flags for safer releases & faster development
	Easy reference guide for feature flag types & uses
	Migrating to OpenFeature at scale
	Wrapping Up

