
SCALING
FEATURE FLAGS

A Roadmap for Safer Releases
& Faster Development

In Collaboration With

2

Contents
4 Moving fast, without
 breaking things

6	 Why	feature	flags?

7 Building a strong foundation

9	 Tailoring	feature	flags	to	your
 organisation’s needs

10	 5	feature	flag	best	practices

11	 Using	feature	flags	for	safer	releases	
											&	faster	development

15	 Easy	reference	guide	for	feature	flag	
											types	&	uses

17	 How	eBay	migrated	to	OpenFeature
											at	scale

20	 Wrapping	up

3

“How are other large
organisations using
feature flags?”

These are questions we get a lot.

Questions	that	often	kick-start	really	interesting	
conversations	with	software	architects,	engineering	
leaders,	and	developers	working	in	regulated	
industries.	The	problem?	They’re	all	happening	
behind	closed	doors.	

This	guide	throws	open	those	doors,	exploring	these	
questions	and	serving	as	a	roadmap	for	introducing	
feature	flags	into	large,	regulated,	or	complex	
organisations—and	then	scaling	them.

“How do we introduce
feature flags across
our entire engineering
organisation?”

“How can we reduce risk
in our releases without
slowing down our
development cycles?”

“Our biggest challenge right
now is modernisation—
what tooling can help and
where do we start?”

4

MOVING FAST, WITHOUT
BREAKING THINGS

No	matter	what	industry	you’re	in,	the	pace	of	change	
keeps	ratcheting	up.	Organisations	see	increased	
competition	from	both	established	incumbents	and	
nimble	upstarts,	while	at	the	same	time	the	external	
landscape	these	businesses	operate	in	seems	
increasingly	turbulent—regulations	change,	supply	
chains	are	shocked,	revolutionary	technology	appears	
seemingly	overnight…

Pete Hodgson
Fractional	CTO	&	OpenFeature	
Governance	Board	Member

Foreword

deployment	incidents,	higher	risk	for	security	vulner-
abilities. “Move fast and break things”, as the saying
goes.

Happily,	that’s	not	necessarily	the	case.	Over	the	last	
couple	of	decades,	leading	software	organisations	
have	demonstrated	that	accelerating	the	rate	of	
change	can	actually	reduce	risk.	It	turns	out	that,	
when	you	use	the	right	practices,	you	can	“move	fast,	
with safety”.

This	claim—that	a	higher	pace	of	software	throughput	
can	lead	to	greater	stability—may	provoke	some	
healthy	scepticism	from	yourself	or	your	peers.	It	
certainly	sounds	a	little	counterintuitive.	However,	
this	idea	is	backed	up	by	solid	empirical	research,	as	
detailed	by	Dr.	Nicole	Forsgren	and	her	DORA	team	
in their book Accelerate.	This	research	group	applied	
statistical	modelling	techniques	to	data	from	over	
23,000	survey	responses,	collected	over	the	course	
of	multiple	years,	to	try	and	understand	the	practices	
that organisations around the world use to build
software,	and	how	well	those	practices	work.	

One	of	the	most	interesting	findings	from	this	wide-
ranging	group	was	the	correlation	between	a	higher	
pace	of	software	throughput	and	higher	levels	of	
stability	and	quality.	It’s	also	worth	noting	that	their	
findings	didn’t	seem	to	be	strongly	affected	by	the	
size	or	type	of	organisation—big	or	small,	regulated	
or	not,	the	same	correlations	were	evident.

The	most	exciting	part	is	that	the	DORA	team	didn’t	
stop	at	just	looking	at	these	performance	metrics;	
they	also	looked	at	the	practices	these	different	

Modern software delivery with feature flags

“It turns out that, when you use the
right practices, you can move fast,
with safety. ”

To	respond	to	all	this	change,	enterprises	need	to	
become	more	nimble—they	need	to	be	able	to	make	
quick	decisions,	experiment,	and	adapt.	And	given	
the	increasingly	digital	nature	of	every	enterprise,	
this	naturally	leads	to	higher	and	higher	expectations	
around	the	pace	of	software	delivery.	

But	while	expectations	around	the	pace	of	software	
delivery	are	increasing,	expectations	around	
quality,	security,	and	compliance	remain	the	same,	
particularly	for	larger	enterprises	operating	in	higher	
regulatory	environments.	

On	the	face	of	it,	this	appears	to	be	an	unresolvable	
conflict.	Surely	accelerating	the	pace	of	change	means	
accepting	a	trade-off	in	terms	of	risk—higher	risk	
for	bugs	and	errors	slipping	past	QA,	higher	risk	for	

https://blog.thepete.net/about/
https://openfeature.dev/

5

organisations	were	using.	They	identified	a	specific	
group	of	“high	performer”	organisations	who	were	
differentiated	on	a	key	set	of	software	delivery	
metrics,	and	most	importantly	they	were	able	to	lay	
out	a	set	of	software	delivery	practices	that	these	
high-performing	organisations	used	to	achieve	speed	
with safety.

The obvious question is, what are these organisations
doing	that	allows	them	to	accelerate	their	pace	of	
software	delivery	while	still	maintaining	quality	and	
stability?	In	large	part,	we	can	say	that	their	success	
lies	in	a	set	of	practices	that	accelerate	the	feedback	
loop	between	code	being	written	and	code	being	
deployed—	a	set	of	practices	often	referred	to	as	
Continuous	Delivery.	

This cluster of techniques works together
to achieve an interconnected set of
principles:

• Reduce	manual	work	in	testing	and	deployment	
activities

• Work	in	small	batches

• Keep	codebase	in	a	deployable	state

• Architect	systems	for	decoupled	deployments

• Make	frequent	deployments	to	production

What	the	DORA	research	showed	us	is	that	organ-
isations	that	focus	on	these	Continuous	Delivery	
practices	are	able	to	move	faster	than	their	competi-
tors,	while	still	maintaining	safety	and	quality.	

One	practice	that	is	near-ubiquitous	within	these	
high-performing	organisations	is	feature	flagging,	
something	you’ll	no	doubt	be	happy	to	hear	since	
you’re holding this eBook in your virtual hands.

Feature flagging facilitates a central tenet of
Continuous Delivery: separating deployment from
release. If	a	team	wants	to	work	in	small	batches	and	
make	frequent	deployments	to	production,	they	are	
confronted	with	a	challenge:	what	to	do	with	work	
that	doesn’t	fit	into	one	of	those	small	batches.	Let’s	
say	the	team	doesn’t	want	to	accumulate	more	than	
a	week’s	worth	of	code	changes	without	a	production	
deployment.	What	do	they	do	if	they	have	a	feature	
which	is	going	to	take	two	weeks	to	implement?	The	

answer	is	that	they	incrementally	merge	and	deploy	
their	changes	all	the	way	to	production,	despite	it	still	
being	a	work-in-progress.	That’s	ok	though,	because	
the	changes	are	deployed	as	latent	code,	inactivated	
behind	a	feature	flag.	Then,	once	the	feature	is	fully	
implemented	(and	tested)	the	feature	flag	is	flipped	on	
and	the	feature	is	released.	This	is	what	we	mean	when	
we	say	deployment	is	separated	from	release—the	
implementation	of	the	feature	is	deployed	incremen-
tally, but the feature is only released when ready.

We	shouldn’t	stop	here.		While	Continuous	Delivery	can	
transform	a	team’s	way	of	working,	feature	flagging	can	
do	a	lot	more.	It’s	also	a	central	part	of	practices	like	
A/B	testing	and	experimentation,	helping	to	level	up	
the	entire	product	delivery	process.	On	the	operational	
side	of	things,	feature	flagging	unlocks	advanced	
techniques	like	canary	releasing	and	dark	launching;	
another	way	for	organisations	to	move	faster,	with	
safety.

I	first	started	talking	to	engineering	leaders	about	
feature	flagging	in	2016,	and	have	served	on	the	
OpenFeature	governance	board	for	the	last	three	
years.	Over	the	past	10	years,		I’ve	had	the	opportunity	
to	see	first-hand	how,	as	companies	navigate	an	
increasingly	challenging	and	dynamic	landscape,	
feature	flags	keep	on	showing	up	to	enable	a	practical	
balance	of	speed	and	safety.	It’s	been	gratifying	to	
watch	the	adoption	of	these	practices	grow	from	a	
quirky	idea	evangelised	by	some	upstarts	in	Silicon	
Valley	to	a	very	mainstream	technique	suitable	for	
even	the	most	mature	engineering	organisations.	

I’ve	also	seen	that	these	benefits	don’t	come	for	
free—feature	flags	do	have	a	carrying	cost,	and	can	
contribute	their	own	technical	burden	if	not	managed	
intentionally.	This	is	especially	true	at	scale	and	for	
large	organisations.	If,	however,	your	feature	flag	
adoption	is	done	strategically,	with	practitioners	
learning	the	correct	technical	approaches	along	the	
way,	then	the	agility	and	speed	that	can	be	gained	is	
undeniable.	The	following	pages	provide	a	roadmap	for	
how	to	safely	and	effectively	do	this	at	scale.

6

WHY FEATURE FLAGS?

Feature	flags	aren’t	a	new	phenomenon.	Notable	
early	converts	include	companies	like	Flickr, Etsy, and
Facebook,	with	Martin	Fowler	and	Pete	Hodgson	writ-
ing	this	foundational	2017	article	that	still	influences	
thinking today.

As	their	popularity	has	grown,	companies	operating	in	
complex	environments	have	started	to	see	the	bene-
fits.	At	a	high	level,	they	can:	

• Remove	development	bottlenecks

• Minimise	risk	around	releases

• Speed	up	time-to-market	for	new	features

• Improve	end-user	experience	(by	significantly	
shortening	feedback	loops)

Of	course,	this	doesn’t	happen	from	simply	introduc-
ing	a	few	“if”	statements	into	your	codebase.	Feature	
flags	are	more	of	a	social	innovation	than	a	techni-
cal	one.	Their	real	magic	is	revealed	when	flags	are	
introduced	to	an	organisation	at	scale—impacting	the	
very	way	software	gets	built.	The	technology	is	only	
half	the	battle.	Determining	how	to	use	it,	who	can	
use	it,	and	how	to	drive	adoption	successfully	is	just	
as	important.

Because	feature	flags	live	deep	in	your	codebase,	it’s	
important	to	introduce	them	in	the	right	way,	avoid-
ing	locking	you	into	specific	vendors—or	bad	habits.	

As	large	organisations	modernise	their	development	
practices,	introducing	metrics	like	DORA	or	SPACE,	
Continuous	Delivery	has	taken	centre	stage.	Feature	
flags	play	a	natural	supporting	role	here,	serving	as	
prerequisites	for	adopting	CD	practices	that	unlock	

faster	release	cycles,	better	code	quality,	greater	
developer	productivity,	and	increased	team	collabo-
ration.

Feature flags are more of
a social innovation than a
technical one. Their real magic
is revealed when flags are
introduced to an organisation
at scale—impacting the very
way software gets built.

Banks,	insurance,	healthcare,	and	government	agen-
cies	face	a	unique	set	of	challenges	when	it	comes	to	
modernising	their	development	practices,	operating	
in	highly-regulated	environments	with	release	practic-
es	that	can	feel	like	they’re	set	in	stone.

The	following	pages	provide	strategies	and	examples	
used	by	some	of	the	largest	enterprises	in	North	
America	and	Europe.	The	goal	is	to	share	practices	
that	can	help	introduce	feature	flags	at	scale,	allowing	
companies	to	introduce	modern	development	practic-
es	that	give	developers	greater	flexibility	and	speed,	
while	increasing	the	safety	of	releases.

https://code.flickr.net/2009/12/02/flipping-out/
https://martinfowler.com/articles/feature-toggles.html

7

BUILDING A STRONG
FOUNDATION FOR
FEATURE FLAGS

How to fight vendor lock-in:
Insights from OpenFeature

Feature	flags	have	become	essential	to	modern	soft-
ware	delivery,	but	implementation	across	your	enter-
prise	presents	a	critical	choice:	how	should	feature	
flags	be	managed?	Many	options	exist,	ranging	from	
homegrown	solutions	to	third	party	vendors.	Until	now,	
each	choice	required	developers	to	use	solution-specif-
ic	feature	flagging	patterns,	locking	organisations	into	
their	choice	and	presenting	a	high	switching	cost	to	
explore	other	options.

Following	in	the	footsteps	of	OpenTelemetry,	Open-
Feature,	a	CNCF	incubating	project	with	broad in-
dustry	support,	solves	this	problem	by	providing	a	
vendor-neutral,	open	standard	for	feature	flags.	Your	
development	teams	write	code	against	one	consistent	
API,	while	your	organisation	maintains	the	freedom	to	
use	any	provider.	Many	organisations	report	that	intro-
ducing	OpenFeature’s	abstraction	layer	is	a	key	step	in	
migrating	from	disparate	internal	solutions	to	a	con-
solidated	feature	flagging	provider,	or	even	abstracting	
multiple	different	providers	behind	a	shared	interface.	

Why vendor-neutral standards matter

Many	enterprises	face	a	common	challenge	that	com-
pounds	as	they	scale:	feature	flags	exist	in	multiple	
forms	across	the	organisation,	from	dedicated	vendors	
to	multiple	homegrown	feature	flagging	and	configura-
tion	management	solutions.	This	fragmentation	creates	
inconsistent	developer	experiences	and	complicates	
governance,	especially	in	regulated	industries	where	
oversight	is	paramount.

Michael Beemer
OpenFeature	Governance	Board	Member

By	providing	an	abstraction	layer	between	your	appli-
cation	code	and	feature	flag	providers,	OpenFeature	
addresses	those	challenges	by	offering:

• A	consistent	developer	experience	regardless	of	the	
underlying	implementation

• Common	terminology	through	a	standardised	glos-
sary	that	aligns	communication	regardless	of	the	tool	
or vendor

• Flexibility	for	different	teams	to	use	their	preferred	
providers	while	maintaining	standardisation

• Seamless	migration	between	providers	as	your	needs	
evolve	without	disrupting	operations

• Streamlined	governance	through	consistent	policies	
and	monitoring	across	all	feature	flags

• Reduced	training	costs	as	developers	learn	one	pat-
tern	that	works	across	projects	and	teams

OpenFeature in practice

Consider	a	large	financial	institution	with	multiple	busi-
ness	units,	each	with	its	own	feature	flag	solutions.	By	
implementing	OpenFeature,	they	can:

1.	 Standardise	how	developers	interact	with	feature	
flags	in	code

2. Gradually	consolidate	to	enterprise-wide	feature	flag	
platforms	where	beneficial

3. Maintain	flexibility	where	different	teams	have	
unique	requirements

4. Enable	consistent	governance	and	reporting	across	
all	implementations

For	organisations	undertaking	modernisation	initiatives	
mentioned	throughout	this	guide,	OpenFeature	provides	
a	critical	path	for	successfully	scaling	feature	flags	across	
your	organisation	while	avoiding	the	pitfalls	of	vendor	
lock-in.

https://openfeature.dev/community/interested-parties/#interested-organizations
https://openfeature.dev/community/interested-parties/#interested-organizations
https://www.linkedin.com/in/beeme1mr/

8

People & processes

Doing	a	good	job	of	introducing	any	new	technolo-
gy	into	a	large	organisation	starts	with	people—the	
people	behind	the	technology	and	the	internal	teams	
who	will	adopt	it.	

Driving	change	in	large	organisations	is	an	iterative	
approach—it	won’t	happen	overnight	and	it	doesn’t	
need	to	be	overwhelming,	especially	if	you	take	the	
time	to	plan	out	your	implementation.	Keep	these	
steps	in	mind	when	approaching	your	planning:

1.	 Ensure	that	company	leadership	is	on	board—
transformations	driven	by	executive	sponsorship	
tend	to	have	a	higher	rate	of	success

2. Identify	a	champion	or	working	group	who	can	
own	the	implementation,	help	with	internal	on-
boarding,	and	work	directly	with	your	feature	flag	
provider	to	get	up	and	running

3. Decide	if	a	pilot	programme	is	needed

4. Come	up	with	a	plan	for	a	phased	rollout	(more	
on this on page	17)

5. Map	out	how	you	are	currently	releasing	new	
features	and	who	is	part	of	the	process

6.	 Identify	any	existing	feature	flagging	solutions	
currently	in	use—they	might	be	disguised	as	con-
figuration	management

Map your current release strategy

Introducing	feature	flags	at	scale	often	happens	as	
part	of	a	wider	modernisation	project,	which	means	
you	may	have	already	done	things	like	identifying	the	
different	players	and	processes	in	your	development	
cycle.	If	not,	teams	often	find	this	to	be	a	valuable	
exercise	when	preparing	to	introduce	feature	flags.	
Think	about:

People

• Which	teams	are	involved?	

• How	do	product	and	engineering	teams	currently	
work	together?

• How	do	the	engineers	and	product	managers	
work	together	on	specific	branches?

• Who	has	the	ability	to	deploy	vs.	release?

• Who else in your organisation outside of engi-
neering	and	product	is	involved	in	releases?	

Processes

• How	do	your	engineers	currently	do	branch	man-
agement?

• How	does	a	new	feature	move	from	idea	>	itera-
tion	>	deployed	>	released?

• Which	parts	of	this	process	add	value?

• What	are	the	bottlenecks?	Do	certain	steps	re-
quire	approvals?

Introduce change thoughtfully

By	introducing	feature	flags	into	your	software	de-
velopment	lifecycle,	you’re	fundamentally	changing	
the	way	teams	build	software.	Your	engineering,	QA,	
product,	and	DevOps/infrastructure	teams	will	experi-
ence	a	massive	change	in	the	way	they	work	together	
(often	moving	from	long,	sometimes	painful	branches	
to	shorter	branches	that	allow	for	more	flexibility).	
Introducing	this	change	in	a	thoughtful	manner	will	
mean	bringing	together	stakeholders	from	each	of	
these	functions	for	rounds	of	feedback.

Bringing	on	feature	flags	will	look	slightly	different	for	
every	organisation,	but	there	are	some	best	practices	
you	can	keep	in	mind	(we’ll	go	over	a	few	on	page	10).	
Many	teams	also	start	small,	whether	with	shov-
el-ready	use	cases	or	a	pilot	programme,	and	then	
build	from	there.

An	important	part	of	a	successful	company-wide	
adoption	will	be	securing	time:	the	time	of	your	cham-
pion	or	working	group	and	the	time	of	any	teams	
piloting	this	new	way	of	working.	Budget	for	this	up	
front	and	create	a	plan	with	specific	milestones	and	
owners—as	well	as	a	strict	timeline,	so	that	the	proj-
ect	keeps	moving	forward.	Ensure	this	plan	is	shared	
at	a	company	level,	so	that	those	involved	are	moti-
vated	to	stay	on	time	and	on	track.	

9

As	you	begin	to	determine	how	to	introduce	feature	
flags	into	your	release	processes,	ensure	your	team	is	
familiar	with	the	different	kinds	of	flags	as	well	as	best	
practices	to	keep	your	flags	healthy	and	reduce	tech	
debt.

Create governance for how you
will use feature flags

Flags	can	become	an	anti-pattern	if	implemented	
incorrectly,	so	keep	in	mind	their	different	types	and	
lifecycles	as	you	begin	to	determine	how	your	organ-
isation	will	use	them.	We	like	to	think	of	feature	flag	
governance	as	a	series	of	layers—every	type	of	flag	
will	look	different	depending	on	your	infrastructure	
and	development	practices	and	the	level	of	security	
you need.

Set roles & permissions

Data	security	is	top	of	mind	for	every	company,	but	
organisations	operating	in	regulated	industries	are	
held to a higher standard.

Determining	feature	management	access	levels	will	
be	part	of	the	conversation	as	you	begin	to	introduce	
feature	flags	at	scale.	It’s	important	to	find	the	right	
balance	between	rigorous	security	standards	and	
productivity.	You	want	to	avoid	creating	unnecessary	
bottlenecks.	

One	way	to	manage	this	is	by	creating	roles	and	per-
missions	for	users	and	taking	advantage	of	features	
your	provider	has,	like	change	requests	and	feature	
approval	workflows.	

TAILORING FEATURE
FLAGS TO YOUR
ORGANISATION’S NEEDS

This	means	that	individuals	will	be	given	different	
levels	of	control	and	have	their	usage	restricted	based	
on	need.	Just	like	any	other	software	permissions	in	
your	business,	the	best	practice	here	is	to	only	give	
users	the	level	of	access	necessary	for	them	to	do	
their	jobs.	

You’ll	also	want	to	think	about,	and	define,	how	differ-
ent	types	of	flags	will	require	different	levels	of	securi-
ty	within	your	organisation.	High-stakes	experiments,	
for	example,	should	always	require	two	users,	a	
“4-eyes”	sign	off,	with	the	appropriate	permissions	to	
approve	changes.	As	another	example,	“break	glass”	
feature	flags	can	be	used	in	special	circumstances	to	
allow	immediate,	emergency-level	access	to	a	critical	
function	or	behaviour,	typically	bypassing	existing	
permissions.	

Enable audit trails

Once	you’ve	decided	who	can	make	changes	and	
where,	it’s	still	important	to	track	changes	that	do	
get	made.	Recording	any	features	that	are	creat-
ed,	changed,	or	deleted,	as	well	as	who	took	those	
actions	and	when,	is	especially	important	if	you	have	
a	large	number	of	developers	working	in	different	
teams.	Having	this	information	can	save	a	lot	of	time	
and	confusion	in	knowing	what	has	been	done,	when,	
and	by	whom.	For	companies	operating	in	regulated	
industries,	audit	logs	are	also	an	important	part	of	
compliance.

10

5 FEATURE FLAG
BEST PRACTICES

Feature	flag	deployment	should	be	planned	early	
on	in	the	software	development	process.	If	flags	
are	simply	layered	in	as	an	afterthought,	they	
won’t	be	as	effective.	Whenever	you	start	work	
on	a	new	feature,	think	about	how	you	can	put	it	
behind	a	feature	flag.	The	possibilities	of	feature	
flags	are	endless,	which	makes	it	even	more	im-
portant	to	define	a	flag’s	scope.

Start	by	defining	exactly	what	each	flag	will	do	
when:

• Disabled/enabled

• There’s	a	remote	configuration	value

Additionally,	think	about	the	rollout	plan.	Will	you	
roll	the	feature	out	all	at	once,	to	segments,	or	to	
individuals?

1. Clean up your feature flags! 3. Make flags as small as possible

4. Flags shouldn’t replace
 business logic

5. Create a naming convention

2. Design features around flags

The	best	way	to	get	the	most	out	of	feature	flags	
(and	enjoy	using	them	while	you’re	at	it)	is	to	
clean	them	up	after	they’ve	served	their	purpose.	
Create	a	built-in	process	for	flag	archiving,	making	
this	a	regular	part	of	your	engineers’	workflows,	
just	as	important	as	reviewing	pull	requests	or	
clearing	issues	in	your	issue	tracker.	This	will	help	
manage	tech	debt	and	save	your	team	time	and	
messiness	down	the	road.	Part	and	parcel	of	this	
is	understanding	the	difference	between	long-
lived	and	short-lived	flags	and	when	to	use	them	
(more	on	flag	lifecycles	soon).

Multitasking	is	great,	but	not	when	it	comes	to	
feature	flags.	Keep	your	feature	flag	scope	specif-
ic.	Start	small—on/off	flags	are	the	simplest	way	
to	get	started.	When	you’re	comfortable	with	this,	
you	can	introduce	more	advanced	capabilities.

Feature	flag	values	shouldn’t	be	used	as	a	re-
placement	for	business	logic.	If	you	create	a	
situation	where	flags	are	interpreting	code	with	
branches	that	interpret	rules,	it	becomes	very	
easy	to	make	a	mistake.	Feature	flag	software	is	
not	an	integrated	development	environment.	If	
you treat it like one, you’ll lose a lot of the bene-
fits	of	just	writing	code	and	being	able	to	test	it	
properly.	For	instance,	you	shouldn’t	use	feature	
flags	for	access	control.	If	you	feel	that	you’re	
using	your	feature	flags	to	guard	your	data	and	
segregate	between	different	types	of	users,	you	
should	probably	use	business	logic	instead.

Having	a	well-defined	naming	convention	is	im-
portant	for	two	reasons:	One,	better	team	col-
laboration:	users	will	understand	what	happens	
when	a	flag	is	turned	on/off	from	its	name	alone.	
Two,	it	will	remove	the	burden	of	decision	every	
time	you	introduce	a	new	flag	and	have	to	name	
it.	As	Phil	Karlton	said,	“There	are	only	two	hard	
things	in	Computer	Science:	cache	invalidation	
and	naming	things.”

11

USING FEATURE FLAGS FOR
SAFER RELEASES & FASTER
DEVELOPMENT

It	may	seem	counterintuitive	to	introduce	greater	
flexibility	and	speed	into	your	release	practices	
when	stability	and	predictability	are	paramount.	
Yet,	predictability	has	a	downside:	if	your	company’s	
deployment	practices	involve	long	development	
cycles	that	are	predictably	slow	and	painful,	predict-
ability	isn’t	doing	you	any	favours,	it’s	likely	blocking	
innovation	and	increasing	the	risk	of	something	
breaking	along	the	way.	And,	as	Pete	Hodgson	points	
out	in	his	foreword,	with	the	right	development	
practices	in	place,	it’s	now	possible	to	move	fast,	with	
safety.

Feature	flags	can	help	you	reduce	risk,	improve	
development	velocity,	and	shorten	feedback	loops,	
strengthening	your	product	offering.

To	explore	what	this	looks	like	in	practice,	in	late	2024	
we	conducted	a	survey	of	our	Enterprise	customers	
in	order	to	understand	the	ways	feature	flags	are	
impacting	their	development	processes.	The	results	
revealed	three	main	areas	of	impact:	risk	reduction,	
development	velocity,	and	experimentation.

84%
Risk reduction

Releases	feel	less risky

What does this actually mean?

Feature	flags	reduce	risk	in	a	really	simple	way.	Wrap	code	in	
a	flag,	roll	it	out	to	users	in	a	controlled	way	(e.g.	with	canary	
deployments)	and	see	how	it	performs.	If	anything	goes	wrong,	
catch	it	in	real	time	and	roll	back	without	needing	to	redeploy.

12

In	software	development,	every	new	feature	is	a	leap	
into	the	unknown	and	brings	up	questions	like:	will	
this	work	as	intended,	is	it	going	to	be	well-received	
by	the	users,	will	it	introduce	new	bugs?	Feature	flags	
form	a	shield	against	these	uncertainties	by	reducing	
exposure	to	risk	via:

Canary deployment

A	canary	deployment	allows	you	to	release	code	to	a	
small	subset	of	users	before	gradually	scaling	up	after	
checking	its	viability.

Kill switch

If	something	is	broken	in	your	code	and	it’s	wrapped	
in	a	feature	flag,	you	can	immediately	disable	it	by	
turning	the	flag	off	with	the	click	of	a	button.	This	
has	an	added	benefit	of	allowing	you	to	continuously	
progress	in	your	code	commits,	rather	than	having	to	
remove	the	code	at	issue	or	redeploy.	This	way	one	
issue	doesn’t	stall	the	whole	development	path	in	its	
tracks.	Plus,	you	can	roll	it	back	instantly	rather	than	
expose	more	and	more	users	to	buggy	code.

Faster recovery

When	things	don’t	go	as	planned,	instead	of	rolling	
back	an	entire	deployment	or	trying	to	cherry	pick	
what	to	roll	back,	you	can	just	toggle	the	offending	
feature	off.	This	keeps	your	services	stable	and	your	
users	happy.	And	if	you	need	to	isolate	an	unstable	
or	underperforming	feature	during	incidents	(for	
example,	downtime,	cyberattacks,	etc.),	you	can	do	so	
without	bringing	down	the	entire	application.

50%
Development velocity

of	customers	that	released	every month before
Flagsmith,	now	release	every day or every week
using	Flagsmith

What does this actually mean?

By	decoupling	deploy	from	release,	developers	
can	push	their	code	when	it’s	ready.	Code	
quality	goes	up	as	developers	push	code	
they’re	confident	in,	and	risk	goes	down.	For	
a	chunk	of	teams,	this	leads	to	more	frequent	
releases.	For	the	other	chunk,	regulations	
mean	monthly	releases	are	still	standard	
(though	many	will	still	deploy	more	regularly,	
especially	to	pre-production	environments).

By	separating	deploy	and	release,	feature	flags	enable	
individual	developers	and	teams	to	simply	push	code	
when they’re ready instead of waiting around for the
next	release	window.	

This	prevents:	

• A	buildup	of	extra	stress	on	the	current	release	
window,	likely	causing	rushed	code	and	potential	
bugs

• Putting	extra	stress	on	the	next	release	by	having	
a	buildup	of	extra	unreleased	code	on	top	of	what	
you	have	planned

• Extra	stress	on	developers	as	releases	get	bigger	
and bigger

13

What is the number one way feature flagging has contributed to feature innovation?

Using feature flags to stay ahead
In	large	enterprises,	release	cycles	tend	to	be	long	
and	slow,	whereas	the	market	is	always	rapidly	
evolving.	Apart	from	freeing	up	engineering	time	for	
writing	code,	working	with	feature	flags	allows	you	
to	balance	rapid	innovation	with	system	stability.	By	
decoupling	deploy	and	release,	your	team	can	intro-
duce	new	features	behind	flags	and	enable	testing	in	
production.	

Experimentation

Feature	flags	give	individual	developers	and	teams	
the	freedom	to	test	and	iterate	new	features	with	
internal	stakeholders,	beta	groups,	and	different	
segments	of	customers.	This	freedom	is	enabled	
without	risk,	because	features	are	hidden	behind	
flags.	This	allows	teams	to	use	data	from	real	users	to	
guide	development	strategy.

What is the biggest impact development
teams have felt?

14

Feature flags allow for numerous
other efficiency gains:

Reduce the number of development
environments

Feature	flags	naturally	lead	towards	a	mono-environ-
ment	methodology	and	cut	down	on	the	reliance	on	
environments,	letting	developers	release	straight	to	
production—or	in	the	case	of	highly-regulated	com-
panies,	pre-production.	The	money	saved	maintaining	
the	environments	can	allow	you	to	invest	in	the	
resilience	of	your	production	environment.

Combine features from previously
disparate teams

Say	you’ve	got	web	and	mobile	teams	that	are	run-
ning	in	isolation—working	on	the	same	features,	but	
for	different	platforms.	This	lack	of	communication	
can	lead	to	bugs	and	also	a	lack	of	parity.	Having	a	
single	feature	flag	project	can	act	as	a	talking	point	
between	these	isolated	teams.

Improve collaboration between technical
teams and non-technical teams

In	large	organisations,	a	lot	of	engineering	time	is	
spent	coordinating	with	non-technical	team	members	
like	product	managers	(and	vice-versa).	This	could	
look	like	product	teams	relying	on	engineers	to	man-
ually	adjust	code	to	run	a	beta	test	or	try	targeting	a	
specific	user	segment	for	a	feature	rollout.	By	giving	
non-technical	team	members	the	ability	to	manage	
feature	releases,	this	massive	bottleneck	disappears,	
freeing	up	engineering	time	for	building	your	product.	

15

EASY REFERENCE
GUIDE FOR FEATURE
FLAG TYPES & USES

Short-lived feature flags enable you to integrate
new	code	into	your	main	codebase	while	keeping	
it	inactive	until	release.	For	example,	you	can	use	a	
feature	toggle	if	you	want	to	hide	a	new	transaction	
feature during testing. When you’re done testing,
switch	it	on	and	release	it	to	all	users	before	
removing	from	your	code,	or	setting	a	reminder	to.

User-based feature flags control	feature	visibility	
based	on	user	attributes	or	segments.	Let’s	say	
you’re	releasing	a	new	tax	filing	feature	in	a	govern-
ment	portal.	You	can	release	it	to	only	small	business	
users	or	sole	proprietors	before	releasing	it	to	your	
entire user base.

Long-lived feature flags	remain	in	the	codebase	
for	extended	periods—or	permanently.	They	
encompass	kill	switches,	and	support	for	multitenant	
architectures.	You	need	to	be	careful	and	ensure	they	
aren’t	removed	since	they’re	critical	to	the	stability	or	
usability	of	your	application.

System-based feature flags control	functionality	
based	on	technical	or	environmental	factors—not	
user	attributes.	They	work	well	in	cases	where	you	
use	different	deployment	environments	or	system	
conditions.	For	example,	a	finance	app	could	use	
these	flags	to	deploy	region-specific	compliance	
features	based	on	the	server’s	geographic	location.

Short-lived feature flags

User-based feature flags System-based feature flags

Long-lived feature flags

16

Release flags can control the	deployment	of	new	
features	to	production	environments.	They	allow	
teams	to	deploy	and	activate	code	separately,	
ultimately	reducing	the	risk	associated	with	new	

Experimentation flags	allow	you	to	run	A/B	
tests	or	any	experiment	in	your	application.	
They’re	meant	to	help	you	measure	the	impact	of	
specific	changes	you	make.	As	a	result,	you	can	
make	better	decisions	about	which	combination	

Operational flags manage	system	behaviour	
during	runtime.	So,	they	serve	as	an	emergency	
control	or	a	way	to	optimise	performance	in	real	
time.	If	you	run	into	production	issues,	these	

Release Flags

Experimentation Flags

Operational Flags

releases.	For	instance,	you	can	use	them	to	gradually	
roll	out	certain	features	automatically	when	they	hit	
certain	thresholds.

of	variables	works	better	for	your	user	base.	Let’s	
say	you	want	to	understand	which	button	colours	
increase	clickthrough	rates	in	your	app.	You	can	
run	two	or	three	versions	of	the	button	colour	and	
analyse	which	ones	drive	the	most	action.

flags	let	you	respond	without	redeployment	or	code	
changes.	For	instance,	if	your	app	experiences	high	
traffic,	you	can	add	thresholds	to	switch	off	certain	
functions	to	reduce	the	traffic	burden	on	the	app.

17

How are large organisations bringing feature
flags on at scale and fighting vendor lock-in?

EBAY CASE STUDY With Chetan Kapoor
& Justin Abrahms

This	case	study	is	a	condensed	
version	of	a	talk	that	Chetan	and	
Justin	gave	at	the	OpenFeature	
North	America	Summit	in	2024.	
You	can	watch	their	full	talk	here.

Live	Listings Active	Buyers	Worldwide

Stats as of Q2 2024

Markets Mobile	Volume

Migrating to OpenFeature at scale:
0 to trillions of calls

~2.1B 132M 190 $12B

Where it started

eBay	was	navigating	challenges	familiar	to	many	
large	organisations—long	development	cycles,	
riskier-than-necessary	deployments,	and	a	siloed	
problem-solving	culture.	The	statistics	above	offer	a	
little	insight	into	the	scale	of	these	challenges.

Meet the Velocity program: Faster
delivery matters!

A	300-team	cross-organisational	effort	staffed	with	
forward-looking	principal	and	senior	principal	archi-
tects	and	key	product	leaders,	the	Velocity	program	
was	built	to	succeed	where	other	modernisation	
efforts	had	failed.	The	program’s	northstar	mission	
was	to	make	software	and	product	delivery	a	compet-
itive advantage for eBay.

In	practice,	this	looked	like	a	ground	up	reworking	
of how eBay thought about feature delivery. How to
make	it	safer,	easier,	and	faster,	driven	primarily	by	
the	DORA	and	SPACE	methodologies	and	focusing	on	
three	main	levers	to	find	success:

1.	 Executive	sponsorship	(CTO	and	CPO	sponsor-
ship):	Securing	executive	sponsorship	enabled	a	
mindset	of,	“go	figure	out	the	problem	and	then	
fix	it”

2. Very	clear	directive:	Making	software	delivery	a	
competitive	advantage	(this	was	easy	to	apply	
when	deciding	if	something	was	in	or	out	of	
scope)	

3. Budget	and	time	to	make	this	happen:	Each	engi-
neering	team	was	allocated	a	percentage	of	their	
total	working	time	to	use	for	the	velocity	initiative

Amongst other objectives, the
program aimed to solve three
key problems in eBay’s developer
ecosystem
1.	 Code	was	stuck	in	review—a	slow	review	process	

meant	developers	were	stuck	waiting	to	merge	
code,	so	pull	requests	became	larger	and	larger,	
ending	in	slow	feature	development	and	riskier,	
large-scale	deployments

https://www.linkedin.com/in/chetan-kapoor-37662247/
https://www.linkedin.com/in/justinabrahms/
https://www.youtube.com/watch?v=6ivdFYgznxQ

18

2. Multiple	configuration	platforms	targeting	
different	sections	of	eBay’s	stack.	Mobile	had	
their	own	feature	flagging	tool,	there	were	a	
few	different	feature	flagging	tools	being	used	
by	backend	teams,	and	some	teams	were	also	
making	use	of	an	experimentation	framework	to	
create	feature	flags

3. A	culture	of	DIY	rather	than	a	platform	mindset	
that	could	save	teams	from	reinventing	the	wheel

Weighing up solutions:
Build vs. buy

Looking	at	these	challenges,	the	team	saw	the	adop-
tion	of	a	unified	feature	flag	platform—and	similarly	
a	unified	way	of	using	feature	flags—as	a	possible	
solution	to	these	problems.	They	weighed	building	
their	own	vs.	buying.	In	the	end,	the	decision	came	
down	to	their	experimentation	needs.	eBay	has	a	
very	mature	experimentation	engine	that	operates	
at	scale,	and	leadership	wanted	a	straightforward	
user	experience	that	would	seamlessly	blend	the	two.	
So	they	chose	to	build	and	add	feature	flags	to	their	
in-house	experimentation	platform.	

However,	as	the	Chair	of	the	Open	Source	program,	
Justin	knew	that	building	something	bespoke	instead	
of	using	an	open-source	solution	felt	risky	in	terms	
of	future-proofing.	So	they	adopted	OpenFeature	to	
provide	an	open-source	facade	layer.	In	the	backend	
they would then use the internal solution, knowing
that	if	this	internal	system	didn’t	work	out,	they	could	
always	introduce	a	vendor	later	on	without	having	to	
rewrite	the	code.	

Building a solution: Enter, eBay’s
experimentation platform
The	in-house	eBay	experimentation	platform	is	used	
to	A/B	test	most	features	before	they	are	broadly	
rolled	out	to	customers,	fostering	a	“test	and	learn”	
culture	that	has	served	the	company	well.	

Rolling	out	feature	flags	on	a	platform	that	already	
had	a	very	high	internal	adoption	rate	seemed	like	
the	ideal	strategy.	“The	idea	of	incorporating	feature	

flags	into	this	flow	just	felt	right”,	says	Chetan	Kapoor,	
the	Head	of	Product	and	Chief	Evangelist	for	Feature	
Flags	at	eBay.	

The	following	steps	were	taken	to	enable	feature	flags	
on	the	platform:

1.	 Used	OpenFeature	SDK
•			Authored	eBay-specific	provider	and	hooks	
•			Benefit:	One	API	that	eBay	used	for	experimen
					tation	and	feature	flags,	so	developers	could	
					get	twice	the	value	from	one	API,	and	were	
					able	to	sunset	25+	legacy	APIs

2. Added	platform	capabilities	as	they	moved	past	
MVP
•			Kill	switch:	allow	site	reliability	to	stop	incidents	
					with	flags	within	1	minute.	
•			Audience-aware	targeting:	A	granular	way	
					of	doing	customer-based	targeting.	A	simple	
					example	of	this	would	be,	“only	show	this	
 feature to users in the UK, using Google
					Chrome,	with	sneakers	in	their	carts”.	
•			Latency	guarantee:	developers	requested	
					best-in-class	evaluation	latency.

3. Simplified	onboarding	journey	
•			Removing	blockers	so	that	all	engineers	could	
					and	would	use	the	platform	for	feature	testing	
					(improved	internal	documentation)
•			Hiring	a	Technical	Program	Manager	to	work	on
					simplifying	onboarding	and	proselytising	
					across	the	company

Building a MVP and driving
adoption at scale

Successfully	building,	iterating,	and	driving	the	adop-
tion	of	a	new	technology	across	a	company	as	large	as	
eBay	requires	a	high	level	of	strategy	as	well	as	buy-in	
from	key	stakeholders	and	influencers	at	every	level	
of the organisation.

Identifying initial influencers

To	kick	off	the	adoption	programme,	the	team	started	
with	three	key	developer	stakeholders.	They	leaned	
into	education	and	topics	like:

• What	are	feature	flags

19

• Why	should	you	care	about	them

• When	should	you	use	them—and	when	should	
you not

• Which	stakeholders	can	answer	your	questions

3. Get	a	commitment:	share	your	plan	and	publicly	
commit	to	it

4. Make	sure	the	migration	experience	was	self-
serve	(the	dedicated	team	had	a	dashboard	to	
monitor	the	migration	progress,	so	they	could	
see	which	teams	were	lagging	behind—this	also	
served as an easy way to troubleshoot and debug
if	people	came	with	questions	about	the	migra-
tion	being	complete,	etc.

5. Internal	marketing	campaign	via	newsletters	and	
escalation	emails	

How did it go?
Feature	flags	have	fundamentally	altered	the	software	
delivery	landscape	at	eBay.	The	company	has	been	
able	to	shorten	development	cycles,	reduce	risk,	and	
increase	developer	productivity.	The	engineering	and	
product	teams	can	now	collaborate,	test	and	iterate	
on	new	features	in	an	agile	way	that	supports	the	
company’s	culture	of	experimentation	and	continuous	
improvements.				

• Billions	of	calls	made	per	day	to	the	feature	flag	
evaluation engine

• 2500+	experiments	behind	flags	every	year

• Rolled	out	to	thousands	of	developers	

• The	15-minute	change	propagation	is	now	down	
to	1	minute	

• The	25	millisecond	evaluation	latency	(deciding	if	
the	feature	should	be	shown	or	not)	is	down	to	<5	
milliseconds

Identify internal
influencers and try to pilot
with a diverse and excited
group of developers.

Gradually,	as	the	team	collected	and	iterated	on	initial	
feedback	from	these	developers,	they	prepared	to	
scale	it	to	other	teams.	

Scaling the pilot programme

They	identified	21	different	teams	to	run	multiple	
pilots	with	to	learn	and	create	the	roadmap	for	a	
feature	flag	MVP.	They	did	three	rounds	of	pilots	over	
three	quarters,	focusing	on	building	product-market	
fit	internally:	

Milestone	1:	Make	it	possible	for	people	to	use	flags	

Milestone	2:	Make	it	useful	to	use	feature	flags

Milestone	3:	Make	that	process	scaleable

Finding success & building the MVP

Once	they	had	completed	the	final	round	of	feedback,	
they	started	preparing	the	MVP,	which,	once	ready,	
they	had	to	roll	out	to	everyone.	No	small	feat	at	a	
company	the	size	of	eBay.	The	team	driving	adoption	
consisted	of:	Chetan	Kapoor,	Justin	Abrahms,	a	
program	manager,	a	senior	architect,	and	a	lead	
engineer.	Along	with	that	dedicated	team,	they	had	a	
5-step	strategy:

1.	 All	the	different	teams	that	needed	to	migrate	
needed	a	real	budget.	They	secured	10%	of	the	
Velocity	budget	

2. Simple	onboarding	instructions	and	demos

20

WRAPPING UP

Feature	flags	allow	large	enterprises	operating	in	
complex	environments	to	move	with	an	agility	that	
was	previously	unattainable.	By	releasing	devel-
opment	teams	from	deployments	that	are	tightly	
coupled	to	releases,	engineers,	QA,	and	product	
teams,	among	others,	can	move	at	their	own	pace,	
increasing	development	velocity	as	well	as	shortening	
feedback	loops.	

For	more	reading,	our	guide	Flip the Switch: Unlock
Modern Software Development with Feature Flags takes
readers	through	the	ROI	of	feature	flags	for	large	
enterprises,	how	to	remove	development	bottlenecks,	
how	feature	flags	fit	into	migration	projects,	and	
more.

 - Senior Manager, Software Engineering, Fortune 500

Without feature toggling, we’d run a deployment,
do a check, and find something. Then we’d have

to decide to live with it or roll it back. Rolling back
meant a wasted night. With Flagsmith, we can turn

things on or off individually on a feature level, so it’s
just really made things smoother for us.”

“

https://143451822.fs1.hubspotusercontent-eu1.net/hubfs/143451822/eBooks/Flip%20the%20Switch%20On%20Modern%20Software%20Development%20with%20Feature%20Flags%20-%20Flagsmith.pdf
https://143451822.fs1.hubspotusercontent-eu1.net/hubfs/143451822/eBooks/Flip%20the%20Switch%20On%20Modern%20Software%20Development%20with%20Feature%20Flags%20-%20Flagsmith.pdf

21

Release with confidence
Flagsmith	is	an	open	source	feature	flag	soft-
ware	that	gives	developers	peace	of	mind.	We	
work	with	data-sensitive	enterprises	across	the	
world,	offering	self-hosting	and	private	cloud	

deployments,	features	for	maximum	security,	
and	technical	support	to	cover	any	needs.	We	
also	partner	with	OpenFeature	to	support	
open	standards	and	prevent	vendor	lock-in.

Get in Touch

Flagsmith.com

https://www.flagsmith.com/contact-us
https://discord.com/invite/hFhxNtXzgm
https://github.com/Flagsmith
https://www.linkedin.com/company/flagsmith/
https://www.youtube.com/channel/UCki7GZrOdZZcsV9rAIRchCw
https://twitter.com/GetFlagsmith
https://www.flagsmith.com/?utm_source=book&utm_campaign=banking+ebook&utm_id=ebook

	Moving fast, without breaking things
	Why feature flags?
	Building a strong foundation for feature flags
	Tailoring feature flags to your organisation’s needs
	Feature Flags for Modern Releases
	Using feature flags for safer releases & faster development
	Easy reference guide for feature flag types & uses
	Migrating to OpenFeature at scale
	Wrapping Up

