
19

Transitioning to 
Modern Authorisation 
Management  

Navigating the ever-evolving landscape of authorisa-
tion management poses considerable challenges for 
companies. The dynamic nature of authorisation re-
quirements, ranging from the addition of new roles to 
adapting to shifts in data security needs, demands a 
delicate and imperative approach. Legacy systems en-
trenched with hard-coded authorisation logic present 
hurdles in terms of scalability, developer experience, 
and responsiveness to changing business demands. 

For regulated industries aiming for compliance bench-
marks like ISO27001, SOC2, or PCI, the fragmented 
nature of authorisation audit logs can pose significant 
challenges during audits or security incidents. In this 
environment, the inability to efficiently handle com-
plex roles and permissions can impede a company’s 
growth potential. 

Transitioning to modern authorisation, or decoupling 
authorisation management from core code, emerg-
es as a strategic solution to the challenges posed by 
legacy systems. The paradigm shift involves centralis-
ing authorisation logic in audited, version-controlled 
policies, separating it from the application code. 
This decoupled authorisation approach brings about 
technical advantages, such as independent evolution, 
versioning, and testing of authorisation logic. Stan-
dardising decisions through a Policy Decision Point 

Alex Olivier
CPO and Co-founder at Cerbos

CHAPTER 4

(PDP) not only enhances efficiency but also ensures 
a consistent audit trail across various components 
of the application architecture. The organisational 
impact is equally profound, as this approach fosters 
transparency, empowering a broader range of stake-
holders to comprehend and modify the permissions 
structure without extensive coding knowledge.

 
The Challenges of Legacy
Authorisation Management

Without fail, your authorisation requirements will 
change. Whether it is adding a new role, completely 
reworking your access model to suit a new product 
packaging framework, or enforcing a change in data 
security needs—this work is delicate, laborious and 
imperative to get right. If the thought of this imme-
diately sounds like a three-month scope of work, or 
touching a ball of mud then it is a sign the authorisa-
tion mechanisms in an application need modernisa-
tion.

Consider a system where this logic has been deep-
ly ingrained and hard-coded into application logic, 
this is going to be a time-consuming, expensive and 

https://bit.ly/3SKroCJ
https://www.cerbos.dev/


20

fragile process. Developers will need to go back into 
code bases which have gone long untouched, convert 
business requirements into code, update tests and 
redeploy the application stack. Changes to the au-
thorisation logic become progressively more difficult 
to implement, often creating bottlenecks in business 
operations. For more heterogeneous microservice 
architectures, the business requirements may have to 
be translated into many different programming lan-
guages and frameworks, each with its idiosyncrasies 
and testing hoops to jump through.

In regulated industries, or for anyone looking to ob-
tain and retain compliance such as ISO27001, SOC2 
or PCI, being on top of the authorisation happening 
at every step of the request chain is critical. Ensuring 
that every microservice, function and worker job not 
only checks whether an action is authorised but also 
makes a concrete, consistent and verifiable audit log 
of the actions is a hard requirement. Approaches 
where each component creates and maintains its 
own authorisation audit logs, result in a fragmented 
set of formats, storage, and retrieval mechanisms. 
When it comes to demonstrating your approach to 
access control to your auditors or security, you may 
find yourself searching through disparate application 
logs and myriad request traces. The pain of trying to 
understand how actions were allowed is only ampli-
fied when being done under pressure due to a breach 
or data security incident.

Moreover, the inability to effectively manage complex 
roles and permissions can limit a company’s growth 
potential. It can prevent businesses from selling to 
larger corporations, hinder operations in regulated 
industries, and slow down product innovation.

There is a better way to approach this which makes a 
system manageable, scalable and most importantly 
compliant. 

The Case for Modern Decoupled 
Authorisation
Decoupled authorisation is a new approach which 
enables application permissions and access controls 
to be defined centrally and enforced locally for each 
application. The core promise of decoupled authori-
sation is to extract all the authorisation logic out of 
the application code base and define it in an audited, 
version-controlled and human-readable set of poli-
cies which can be stored as configuration rather than 
application code. 

These policies are loaded into a Policy Decision Point 
(PDP) which is deployed alongside your application 
and then wherever permissions need to be checked, 
rather than hardcoding the logic, an API is made out 
to the PDP with all the relevant context, and a simple 
ALLOW or DENY decision is returned. The application 
code is now a simple boolean check of this response 
to decide whether to do the requested action or not.

This approach has two major technical advantages:

1. Authorisation logic is now independent of the 
application code. It can be evolved, versioned and 
tested in isolation. Whenever a change is made, 
all the PDPs receive the updated policies and 
immediately serve decisions based upon them 
without any need to touch the application code, 
saving time and deployment risk.

2. All decisions, regardless of where in the appli-
cation architecture—frontend, backend, async 
jobs—are going through a standardised PDP 
service which will make the correct decision based 
on the policy but also create a standardised audit 
log of the decision made checking many compli-
ance boxes.

A side effect of decoupling the logic out of the appli-
cation code is more organisational. This approach 
allows both business stakeholders and non-expert 
engineers to understand the permissions structure 



21

as policies are now written as configuration defini-
tions rather than application code. Whilst there are 
some domain-specific language concepts to learn for 
any policy format, the effort to learn is far less than 
understanding the entire application code base struc-
ture and architectural decisions. This transparency 
empowers a broader range of stakeholders to make 
changes to the authorisation logic without needing 
extensive coding knowledge or risking the stability of 
the core application.

in demand. You will need to evaluate outage risks and 
how to mitigate them.

Lastly, using an authorisation server means adding a 
call to another application, which means added laten-
cy to your application. So make sure the solution you 
select is performant. If you opt for a SaaS solution, 
consider the provider’s geographic proximity to your 
application. The better alternative is, of course, to 
have a solution that can be deployed in your infra-
structure. 

Decoupling Authorisation: Best 
Practices
 
From our experience at Cerbos, 90% of the effort 
involved with migrating to a more modern authori-
sation solution isn’t a technical one, but rather a 
business analysis one. Authorisation has stakeholders 
from across the organisation—be it security teams, 
customer support, product development, sales and 
DevOps. Getting all these parties around the table 
and agreeing on what the access model should be for 
an application is key. 

We always recommend starting with a simple spread-
sheet with a column for each user role, and all the 
actions as rows and simply fill in the boxes for which 
role can do each action. This quickly highlights the 
complexity of the permissions as the answer is not 
always a simple ALLOW or DENY but rather a condi-
tional one.

Once everyone is on the same page, the actual im-
plementation can seem rather trivial, but there are 
several aspects to consider. It’s important to select a 
solution that meets your application’s requirements 
and can scale with your needs. Consider factors such 
as ease of integration, performance, flexibility, and 
support for different access control models. Ideally, 
the solution should seamlessly integrate with your ex-
isting infrastructure, including identity providers, data 
stores, and messaging systems, to avoid introducing 
new vulnerabilities or dependencies.

There are various challenges that a development 
team may face when implementing decoupled au-
thorisation:  

Addressing the Challenges in 
Shifting to Modern Authorisation
 
Decoupling authorisation means relying on a third 
party, so you need to consider the potential risks that 
come with it so that you can manage them well.

Firstly, vendor lock-in can feel like a loss of control 
since you can rely only on the features of the solu-
tion you’ve chosen. The language of your policies and 
their configuration structure will be imposed by the 
solution you use. If you find that a feature is missing, 
you may struggle to achieve your goals, and moving 
to another solution may be complex. It’s therefore of 
paramount importance to choose your solution well.

That means making sure you select a solution that 
can support your workload and is highly available. 
Otherwise, the authorisation component may become 
a bottleneck or, worse, the single point of failure. For 
example, you may want to evaluate the scalability of 
the solution and its ability to handle your traffic load, 
including periods of increased traffic or sudden spikes 

https://bit.ly/3SKroCJ


22

Ensuring Policies Are Enforced 
Accurately and Efficiently

An authorisation system must be robust, accurate, 
and perform well under load. It’s essential to validate 
policies before deployment and ensure that they are 
applied consistently across the application. For exam-
ple, a development team for a large e-commerce plat-
form must ensure that the decoupled authorisation 
system can handle a high volume of user requests 
during peak shopping times to protect sensitive user 
data and prevent unauthorised access to restricted 
resources such as payment information or order 
management. 

Maintaining Policy Consistency Across 
Multiple Services and Microservices
 
Maintaining policy consistency across multiple 
services and microservices can become challenging 
as applications scale and evolve. Developers must 
ensure that authorisation rules are synchronised and 
that changes propagate correctly throughout the 
system. For example, a content streaming platform 
may use microservices for user management, content 
catalogue, and billing. As new features and services 
are added, the development team must ensure that 
authorisation policies remain consistent across all 
microservices. 

Dealing With Policy Conflicts 
and Resolutions
 
Increasing the number of policies also increases the 
potential for conflicts. Developers must be able to 
detect and resolve these conflicts to ensure that the 
correct access permissions are applied in all scenari-
os. For example, in a healthcare application, a doctor 
may have access to their own patients’ records, but 
access to records of patients outside their care may 
be restricted to emergency situations. In this case, the 
development team must implement a mechanism to 
detect and resolve policy conflicts, ensuring that the 
doctor can access critical information in emergencies 
but is restricted from accessing other patients’ re-
cords in non-emergency situations. 
 
 

Standardise Communication Across the 
Business
 
Communicating effectively will allow your business to 
implement authorisation quickly; use clear, concise 
policies that are easy to understand and maintain. 
Using comments and descriptive names for variables, 
functions, and classes helps provide context and 
improve readability. Periodically review and update 
access control policies to ensure they remain accurate 
and reflect the current state of your application; this 
helps to prevent stale or outdated policies from caus-
ing security issues. 

Create Robust Testing
 
Before deploying policies to production environ-
ments, extensively test them. Automated testing 
tools and techniques like unit tests and integration 
tests can help validate policy behavior and ensure it 
meets requirements. In addition, implement robust 
logging and monitoring solutions, such as the ELK 
stack (Elasticsearch, Logstash, and Kibana) or Splunk, 
to track authorisation activity. Use this data to detect 
potential issues, analyse trends, and provide evidence 
for compliance audits.

Decoupled authorisation is essential to modern 
software development, offering flexibility, scalability, 
and improved security. However, a business must 
understand and address the technical challenges of 
decoupled authorisation to create robust and main-
tainable applications. Plan carefully and implement 
a solution that works for you and your organisation; 
this will help you adapt to changing requirements and 
regulations more effectively. 



23

Conclusion
Having security concerns means your application 
stack likely has several layers of authorisation from 
the network level down to the resource levels and 
through the application itself. The issue with this 
approach to authorisation is its complexity and lack of 
visibility. For instance, at the application level, devel-
opers may not realise that they’re writing the same 
code repeatedly to check who can do what.

This is where the idea of decoupling authorisation log-
ic from the main application comes into play. It allows 
developers to outsource repetitive tasks and offers 

increased visibility on your policies. This approach 
reduces the overhead of managing authorisation logic 
and allows you to focus on implementing business 
logic. Decoupling authorisation also enables policy 
frameworks to be tested independently, increases 
visibility, and provides comprehensive audit trails.

Decoupling authorisation is a powerful tool that can 
help organisations improve their security and reliabil-
ity. However, you need to carefully evaluate potential 
risks before selecting your solution provider. This pro-
cess includes considering some downsides, such as 
being aware of vendor lock-in and the need to select a 
solution that is both performant and highly available.

About Cerbos
 
If you are interested in a decoupled authorisation solution, consider Cerbos to easily implement 
and manage fine-grained access control in your applications.

https://bit.ly/3SKroCJ


35

Flagsmith is an open source feature flag software that 
lets developers release with confidence. We work with 
banks and financial institutions across the world to 
help them transition to modern feature management 
and software development, offering on-premise 
deployments, security features, and technical 
support to cover your needs. We also partner with 
OpenFeature to support open standards and prevent 
vendor lock-in.

Get in Touch

“Our development speed and velocity have increased. 
Mainly, though, I just feel good about releases. I know 
when I ship something to production it’s going to be safe 
and I won’t have to do a thousand tests to make sure I 
don’t miss something. When things are behind a feature 
flag, I know what is and isn’t enabled in production and I 
have the visibility I need.”

Flagsmith.com

Globally active investment firm with Swiss roots

https://www.flagsmith.com/contact-us?utm_source=ebook&utm_medium=ebook&utm_campaign=banking_ebook&utm_id=ebook
https://www.vontobel.com/en/
https://discord.com/invite/hFhxNtXzgm
https://github.com/Flagsmith
https://www.linkedin.com/company/flagsmith/
https://www.youtube.com/channel/UCki7GZrOdZZcsV9rAIRchCw
https://twitter.com/GetFlagsmith
https://www.flagsmith.com/?utm_source=book&utm_campaign=banking+ebook&utm_id=ebook

	Moving to Modern Software Development for Banks 
	Banking and Modern Observability 
	Unlocking Efficiency 
	Transitioning to Modern Feature Management with Feature Flags
	Transitioning to Modern Authorisation Management  
	Platforms  
	Conclusion



